UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	. ago z	GCE AS/A LEVEL – October/November 2011 9701			
1	(a) (i) n	nass of C = $\frac{12 \times 0.352}{44}$ = 0.096g	(1)		
	n	$(C) = \underline{0.096} = 0.008$ 12	(1)		
	(ii) n	nass of H = <u>2 × 0.144</u> = 0.016g 18	(1)		
	r	$(H) = \frac{0.016}{1} = 0.016$	(1)		
	(iii) n	nass of oxygen = 0.240 – (0.096 + 0.016) = 0.128g	(1)		
	n	$(O) = \frac{0.128}{16} = 0.008$	(1)		
	а	llow ecf at any stage		[6]	
	(b) C:H	: O = 0.008: 0.016 : 0.008 = 1:2:1			
	allow	C : H : O = <u>0.096</u> : <u>0.016</u> : <u>0.128</u> = 1:2:1 12 1 16			
	gives	CH ₂ O	(1)	[1]	
	(c) (i) A	$M_{\rm r} = mRT = \frac{0.148 \times 8.31 \times 333}{1.01 \times 10^5 \times 67.7 \times 10^{-6}}$	(1)		
		= 59.89			
	а	llow 59.9 or 60	(1)		
	(ii) C	$C_2H_4O_2$	(1)	[3]	
	(d) CH ₃ C	O_2H	(1)		
	HCO ₂	CH ₃	(1)	[2]	
	(e) the o	nly products of the reaction are the two oxides H ₂ O and CO ₂ and copper	(1)	[1]	

Mark Scheme: Teachers' version

Syllabus

Paper

[Total: 13]

Page 2

	GCE AS/A LEVEL – October/November 2011	9701	21	
correct e	 S(g) → S⁺(g) + e⁻ correct equation correct state symbols 			
electrons	to Ar, sare added to the same shell/have same shielding sare subject to increasing nuclear charge/proton numbers are closer to the nucleus or atom gets smaller	oer	(1) (1) (1)	[3]
in M in A <i>l</i>	and A <i>l</i> g outermost electron is in 3s and coutermost electron is in 3p		(1)	
is ful is mo	lectron is at higher energy or rther away from the nucleus or ore shielded from the nucleus		(1)	
	one 3p orbital has paired electrons and 3p sub-shell is singly filled		(1)	
paire	ed electrons repel		(1)	[4]
(d) (i) and (i	i)			

Mark Scheme: Teachers' version

Syllabus

Paper

element	Na	Mg	Al	Si	Р	S
conductivity	high	high	ı	moderate	low	low
melting point	low	high	_	high	low	low
	(1)	(1)		(1)	(1)	(1)

one mark for each correct column

Page 3

2

[5]

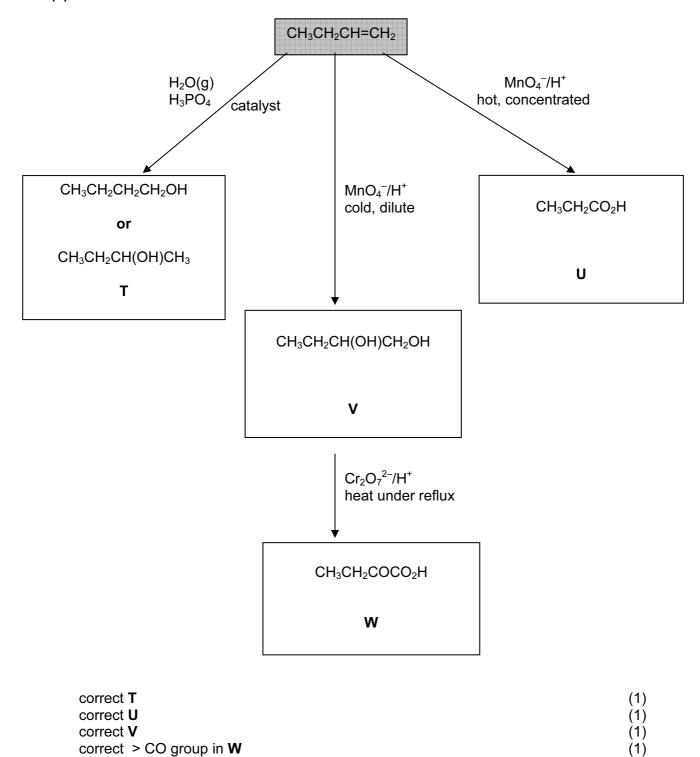
(e) germanium/Ge (1) [1]

[Total: 15]

I ago	-	Mark Ochemic: reachers version	Cyliabas	i apci	
		GCE AS/A LEVEL – October/November 2011	9701	21	
3 (a) the	e over	all enthalpy change/energy change/∆ <i>H</i> for a reaction		(1)	
is i	indepe	endent of the route taken or endent of the number of steps involved I the initial and final conditions are the same		(1)	[2]
(b) (i)	K ₂ C	$O_3 + 2HCl \rightarrow 2KCl + H_2O + CO_2$		(1)	
(ii)	heat	t produced= m × c × δ T = 30.0 × 4.18 × 5.2 = 652.08 J per 0.0200 mol of K_2CO_3		(1)	
(iii)	0.02	20 mol $K_2CO_3 = 652.08 \text{ J}$			
	1 m	ol $K_2CO_3 = \frac{652.08 \times 1}{0.0200} = 32604 \text{ J}$			
	enth	nalpy change = -32.60 kJmol ⁻¹		(1)	
(iv)		revent the formation of KHCO ₃ or nsure complete neutralisation		(1)	[4]
(c) (i)	KHC	$CO_3 + HCl \rightarrow KCl + H_2O + CO_2$		(1)	
(ii)	heat	t absorbed= m × c × δT = 30.0 × 4.18 × 3.7 = 463.98 J per 0.0200 mol of KHCO ₃		(1)	
(iii)	0.02	$20 \text{ mol KHCO}_3 \equiv 463.98 \text{ J}$			
	1 m	ol KHCO ₃ = $\frac{463.98 \times 1}{0.0200}$ = 23199 J			
	enth	nalpy change = +23.20 kJmol ⁻¹		(1)	[3]
(d) Δ <i>F</i>	H = 2 ×	$s(+23.20) - (-32.60) = +79.00 \text{ kJ mol}^{-1}$		(2)	[2]

Mark Scheme: Teachers' version

[Total: 11]


Syllabus

Paper

Page 4

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9701	21

4 (a)

(1)

[5]

correct -CO₂H group in W

Page 6	Page 6 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – October/November 2011	9701	21

(b) T + U

or

correct structures (1) correctly displayed ester group (1) [2]

[Total: 7]

[7]

5 (a) (i) 1 primary (1) alcohol **not** hydroxyl (1)

2 aldehyde **not** carbonyl (1)

(ii)

test 1			
reagent	Na	PCl ₃ /PCl ₅ /PBr ₃	RCO₂H/H ⁺
observation	gas/H ₂ /effervescence/ fizzing	HC∄HBr steamy fumes	fruity smell
test 2			
reagent	Tollens' reagent	Fehling's reagent	2,4-dinitro- phenylhydrazine
observation	Ag mirror/silver/ black ppt	brick-red ppt red ppt	orange/red/yellow ppt/solid

only award the observation mark if reagent is correct (4)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9701	21

5 (c)

route	starting compound	first reagent	intermediate X	second reagent	intermediate Y	third reagent	final compound
A/1	HOCH₂CHO	PCl_3 PCl_5 $SOCl_2$ etc.	C <i>1</i> CH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH ⁻ Tollens' or Fehling's reagents	C <i>I</i> CH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
A/2	HOCH₂CHO	HBr P/Br₂ etc.	BrCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH ⁻ Tollens' or Fehling's reagents	BrCH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
B/1	HOCH₂CHO	PCl_3 PCl_5 $SOCl_2$ $etc.$	C <i>I</i> CH₂CHO	NH ₃	H₂NCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH [−] Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
B/2	HOCH₂CHO	HBr P/Br₂ etc.	BrCH₂CHO	NH ₃	H₂NCH₂CHO	K ₂ Cr ₂ O ₇ /H ⁺ KMnO ₄ /H ⁺ KMnO ₄ /OH ⁻ Tollens' or Fehling's reagents	H ₂ NCH ₂ CO ₂ H
С	HOCH₂CHO	Tollens' or Fehling's reagents	HOCH₂CO₂H	KBr/conc. H ₂ SO ₄	BrCH₂CO₂H	NH ₃	H ₂ NCH ₂ CO ₂ H
mark		(1)	(1)	(1)	(1)	(1)	

[5]

[2]

(1)

[Total: 14]